Relevance of amadori and maillard products to seed deterioration.

نویسندگان

  • S H Wettlaufer
  • A C Leopold
چکیده

The possible role of Amadori and Maillard reactions in the deterioration of dry seeds was investigated using model systems and whole soybean seeds, Glycine max cv Hodgson. In model systems of glucose plus an enzyme (lysozyme), the production of Amadori products was accelerated by higher temperature and relative humidity. The reaction between glucose and lysozyme at 50 degrees C, 75% relative humidity, leads to a progressive decline in enzymatic activity. During accelerated aging of soybean seeds (40 degrees C, 100% relative humidity), a sequence is observed in which the Amadori products increase with time and then decline under conditions in which the Maillard products increase in the axes. Loss of germinability occurs at the time when the Maillard products increase in the soybean axes. These results are suggestive of a role for nonenzymic glycation in soybean seed deterioration during accelerated aging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein modification by Amadori and Maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation.

The non-enzymatic modifications of proteins through Amadori and Maillard reactions play an important role in the loss of seed viability during storage. In the present study, the contribution of sugar hydrolysis and lipid peroxidation to Amadori and Maillard reactions, and to seed deterioration was investigated in mung-bean (Vigna radiata Wilczek). The contents of glucose and lipid peroxidation ...

متن کامل

Advanced Glycation End Products and Their Receptors as Risk Factors for Aging

Glycation is the reaction between amino residues of proteins and carbonyl of reducing sugars. French Louis Camille Maillard discovers this reaction from the browning reaction by amino acid and sugar, and it is widely known for the food chemistry as the Maillard reaction. The hemoglobin A1c (HbA1c) measured all over the world as a marker of glycemic control is equivalent to the Amadori rearrange...

متن کامل

Recent Advances in the Chemistry of Strecker Degradation and Amadori Rearrange- ment: Implications to Aroma and Color Formation

The importance of Strecker degradation lies in its ability to produce Strecker aldehydes and 2-aminocarbonyl compounds, both are critical intermediates in the generation of aromas during Maillard reaction, however, they can also be formed independently of the pathways established for Strecker degradation. Strecker aldehyde can be formed directly either from free amino acids or from Amadori prod...

متن کامل

Mechanisms of acrylamide formation: Maillard-induced transformation of asparagine.

The formation of acrylamide (AA) from L-asparagine was studied in Maillard model systems under pyrolysis conditions. While the early Maillard intermediate N-glucosylasparagine generated approximately 2.4 mmol/mol AA, the Amadori compound was a less efficient precursor (0.1 mmol/mol). Reaction with alpha-dicarbonyls resulted in relatively low AA amounts (0.2-0.5 mmol/mol), suggesting that the St...

متن کامل

Maillard Reaction in Milk – Effect of Heat Treatment

The Maillard reaction (nonenzymatic glycation) is a chemical reaction between amino group and carbonyl group; it is the extremely complex reaction that usually takes place during food processing or storage. In the case of milk, lactose reacts with the free amino acid side chains of milk proteins (mainly ε-amino group of lysine residue) to proceed to early, intermediate, and advanced stages of M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 97 1  شماره 

صفحات  -

تاریخ انتشار 1991